On Mixed and Componentwise Condition Numbers for Hyperbolic Qr Factorization

نویسندگان

  • Wei-guo Wang
  • Nan Hao
  • Yimin Wei
چکیده

We present normwise and componentwise perturbation bounds for the hyperbolic QR factorization by using a new approach. The explicit expressions of mixed and componentwise condition numbers for the hyperbolic QR factorization are derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Componentwise perturbation analyses for the QR factorization

This paper gives componentwise perturbation analyses for Q and R in the QR factorization A = QR, QTQ = I , R upper triangular, for a given realm×nmatrixA of rank n. Such specific analyses are important for examplewhen the columns ofA are badly scaled. First order perturbation bounds are given for both Q and R. The analyses more accurately reflect the sensitivity of the problem than previous suc...

متن کامل

Stability and sensitivity of tridiagonal LU factorization without pivoting

In this paper the accuracy of LU factorization of tridiagonal matrices without pivoting is considered. Two types of componentwise condition numbers for the L and U factors of tridiadonal matrices are presented and compared. One type is a condition number with respect to small relative perturbations of each entry of the matrix. The other type is a condition number with respect to small component...

متن کامل

On mixed and componentwise condition numbers for Moore-Penrose inverse and linear least squares problems

Classical condition numbers are normwise: they measure the size of both input perturbations and output errors using some norms. To take into account the relative of each data component, and, in particular, a possible data sparseness, componentwise condition numbers have been increasingly considered. These are mostly of two kinds: mixed and componentwise. In this paper, we give explicit expressi...

متن کامل

Using dual techniques to derive componentwise and mixed condition numbers for a linear functional of a linear least squares solution

We prove duality results for adjoint operators and product norms in the framework of Euclidean spaces. We show how these results can be used to derive condition numbers especially when perturbations on data are measured componentwise relatively to the original data. We apply this technique to obtain formulas for componentwise and mixed condition numbers for a linear functional of a linear least...

متن کامل

Mixed, componentwise condition numbers and small sample statistical condition estimation of Sylvester equations

We present a componentwise perturbation analysis for the continuous-time Sylvester equations. Componentwise, mixed condition numbers and new perturbation bounds are derived for the matrix equations. The small sample statistical method can also be applied for the condition estimation. These condition numbers and perturbation bounds are tested on numerical examples and compared with the normwise ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008